首页>小学奥数>导航 > 最新信息

小学生奥数题及答案精选(20道)

2024-12-12 16:22:00 来源:无忧考网
【导语】在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是©无忧考网整理的《小学生奥数题及答案精选(20道)》相关资料,希望帮助到您。

1.小学生奥数题及答案精选 篇一

  一大块金帝牌巧克力可以分成若干大小一样的正方形小块。小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。那么他们开始吃第1小块的时间是几时几分?

  分析:小明每隔20分钟吃1小块,小强每隔30分钟吃1小块,小强比小明多间隔10分钟,小明14时40分吃最后1小方块,小强18时吃最后1小方块,小强比小明晚3小时20分,说明在吃最后一块前面共有(3×60+20)/10=20个间隔,即已经吃了20块。那么,20×20=400分钟=6小时40分钟,14时40分-6小时40分=8时。

  解:18时-14时40分=3小时20分=3×60+20=200分钟,已经吃的块数=200/(30-20)=20块,小明吃20块用时20*20=400分钟=6小时40分钟,开始吃第一块的时间为14时40分-6小时40分=8时。

2.小学生奥数题及答案精选 篇二

  甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。问:甲、乙原订每天自学的时间是多少分钟?

  分析:甲每天增加自学时间半小时,乙每天减少自学时间半小时,甲比乙多自学一个小时,乙自学6天的时间仅相等于甲自学一天的时间,甲是乙的6倍,差倍问题。

  解:乙每天减少半小时后的自学时间=1/(6-1)=1/5小时=12分钟,乙原计划每天自学时间=30+12=42分钟,甲原计划每天自学时间=12*6-30=42分钟。

3.小学生奥数题及答案精选 篇三

  (1)1+2+3+4+5+6+7+8+9+10=

  (2)1+3+5+7+9+11+13+15+17+19=

  (3)2+4+6+8+10+12+14+16+18+20=

  (4)13+14+15+16+17+25=

  答案:(1)1+2+3+4+5+6+7+8+9+10=55

  (2)1+3+5+7+9+11+13+15+17+19=100

  (3)2+4+6+8+10+12+14+16+18+20=110

  (4)13+14+15+16+17+25=100

4.小学生奥数题及答案精选 篇四

  养鸡场的母鸡只数是公鸡的6倍,后来公鸡和母鸡各增加60只,结果母鸡只数就是公鸡的4倍。原来养鸡场一共养了多少只鸡?

  分析:养鸡场原来母鸡的只数是公鸡的6倍,如果公鸡增加60只,母鸡增加60×6=360只,那么,后来的母鸡只数还是公鸡的6倍。可实际母鸡只增加了60只,比360只少300只。因此,现在母鸡只数只有公鸡的4倍,少了2倍。所以,现在公鸡的只数是300÷2=150只,原来有公鸡150-60=90只,一共养了90×(1+6)=630只鸡。

5.小学生奥数题及答案精选 篇五

  甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。求东、西两村相距多少千米?

  分析与解答:二人相遇时,甲比乙多行15×2=30(千米),说明二人已行30÷6=5(小时),上午8时至中午12时是4小时,所以甲的速度是15÷(5-4)=15(千米)。

  因此,东西两村的距离是15×(5-1)=60(千米)

  上午8时至中午12时是5小时。

  15×2÷6=5(小时)

  15÷(5-4)=15(千米)

  15×(5-1)=60(千米)

6.小学生奥数题及答案精选 篇六

  A、B两地相距259千米,甲车从A地开往B地,每小时行38千米;半小时后,乙车从B地开往A地,每小时行42千米。乙车开出几小时后和甲车相遇?

  分析:我们可以设乙车开出后X小时和甲车相遇。相遇时,甲车共行了38×(X+0.5)千米,乙车共行了42X千米,用两车行的路程和是259千米来列出方程,最后求出解。

  解:设乙车开出X小时和甲车相遇。

  38×(X+0.5)+42X=259

  解得X=3即:乙车开出3小时后和甲车相遇。

7.小学生奥数题及答案精选 篇七

  王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?

  分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。所以狗共行了500×10=5000米。

8.小学生奥数题及答案精选 篇八

  有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第相遇?

  想:由已知条件可知,二人第相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第相遇时经过的时间。

  解:600÷(400-300)

  =600÷100

  =6(分)

  答:经过6分钟两人第相遇。

9.小学生奥数题及答案精选 篇九

  计算141-102

  思路导航:两个数相加、减,如果其中一个数接近整十或整百数,在计算时可以看作整十、整百数来进行计算,然后根据“多加要减,少加还要加;多减要加,少减还要减”的原理进行计算比较简便。

  解:141-102

  =141-(100+2)

  =141-100-2

  =41-2

  =39

10.小学生奥数题及答案精选 篇十

  二年级3个班的同学乘坐3辆汽车去春游,每辆车坐63人,3个班的男生共有96人,3个班的女生有多少人?

  思路导航:要求女生共有多少人,必须知道一共有多少人,根据“3个班的同学坐3辆汽车去春游,每辆车坐63人”,可以求出一共有63×3=189(人),用总人数-男生人数=女生人数。

  解:63×3=189(人)

  189-96=93(人)

  答:3个班的女生有93人。

11.小学生奥数题及答案精选 篇十一

  小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?

  解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由(70×4)÷(90-70)=14(分)

  可知,小强第二次走了14分,推知第一次走了18分,两人的家相距

  (52+70)×18=2196(米)。

12.小学生奥数题及答案精选 篇十二

  晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个。晶晶摆这个方阵共用围棋子多少个?

  答案与解析:方阵每向里面一层,每边的个数就减少2个。知道最外面一层每边放14个,就可以求第二层及第三层每边个数。知道各层每边的个数,就可以求出各层总数。

  解:最外边一层棋子个数:(14-1)×4=52(个)

  第二层棋子个数:(14-2-1)×4=44(个)

  第三层棋子个数:(14-2×2-1)×4=36(个)。

  摆这个方阵共用棋子:52+44+36=132(个)

  还可以这样想:中空方阵总个数=(每边个数一层数)×层数×4进行计算。

  解:(14-3)×3×4=132(个)

  答:摆这个方阵共需132个围棋子。

13.小学生奥数题及答案精选 篇十三

  某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书多买一本)?

  首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。要保证至少有一个抽屉里有2人,那么去的人数应大于抽屉数。所以至少要去7+1=8(个)学生才能保证一定有两位同学买到相同的书。

  买书的类型有:

  买一本的:有语文、数学、外语3种。

  买二本的:有语文和数学、语文和外语、数学和外语3种。

  买三本的:有语文、数学和外语1种。

  3+3+1=7(种)把7种类型看做7个抽屉,要保证一定有两位同学买到相同的书,至少要去8位学生。

14.小学生奥数题及答案精选 篇十四

  一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?

  答案

  甲乙丙3人8天完成:5/6-1/3=1/2

  甲乙丙3人每天完成:1/2÷8=1/16,

  甲乙丙3人4天完成:1/16×4=1/4

  则甲做一天后乙做2天要做:1/3-1/4=1/12

  那么乙一天做:[1/12-1/72×3]/2=1/48

  则丙一天做:1/16-1/72-1/48=1/36

  则余下的由丙做要:[1-5/6]÷1/36=6天

  答:还需要6天。

15.小学生奥数题及答案精选 篇十五

  根据下面两个算式,求○与△各代表多少?

  △-○=2

  ○+○+△+△+△=56

  【思路导航】由第一个算式可知,△比○多2;如果将第二个算式的○都换成△,那么5个△=56+2×2,△=12,再由第一个算式可知,○=12-2=10。

16.小学生奥数题及答案精选 篇十六

  妈妈让小明给客人烧水沏茶。洗水壶需要1分钟,烧开水需要15分钟,洗茶壶需要1分钟,洗茶杯需要1分钟。要让客人喝上茶,少需要多少分钟?

  【思路导航】经验表明,能同时做的事,尽量同时做,这样可以节省时间。水壶不洗,不能烧开水,因此,洗水壶和烧开水不能同时进行。而洗茶壶、洗茶杯和拿茶叶与烧开水可以同时进行。

  根据以上的分析,可以这样安排:先洗水壶用1分钟,接着烧开水用15分钟,同时洗茶壶、洗茶杯、拿茶叶,水开了就沏茶,共需要16分钟。

17.小学生奥数题及答案精选 篇十七

  甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?

  答案:如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188。如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。同样,这时丙的年龄也是乙两倍。所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁)。

18.小学生奥数题及答案精选 篇十八

  有砖26块,兄弟二人争着去挑。弟弟抢在前面,刚摆好砖,哥哥赶到了。哥哥看弟弟挑得太多,就抢过一半。弟弟不肯,又从哥哥那儿抢走一半。哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?

  【答案解析】

  解:{26-[26-(12+5)]×2}×2

  ={26-[26-17]×2}×2

  =(26-9×2)×2

  =8×2

  =16(块)

19.小学生奥数题及答案精选 篇十九

  标有A、B、C、D、E、F、G记号的七盏灯顺次排成一行,每盏灯安装着一个开关,现在A、C、D、G四盏灯亮着,其余三盏灯是灭的。小方先拉一下A的开关,然后拉B、C……直到G的开关各一次,接下去再按A到G的顺序拉动开关,并依此循环下去。他拉动了1990次后,亮着的灯是哪几盏?

  答案:B、C、D、G

  解析:小方循环地从A到G拉动开关,一共拉了1990次。由于每一个循环拉动了7次开关,1990÷7=284……2,故一共循环284次。然后又拉了A和B的开关一次。每次循环中A到G的开关各被拉动一次,因此A和B的开关被拉动248+1=285次,C到G的开关被拉动284次。A和B的状态会改变,而C到G的状态不变,开始时亮着的灯为A、C、D、G,故最后A变灭而B变亮,C到G的状态不变,亮着的灯为B、C、D、G。

20.小学生奥数题及答案精选 篇二十

  敬老院买来许多苹果、橘子和梨,每位老人任意选两个,那么,至少应有几位老人才能保证必有两位或两位以上老人所选的水果相同?

  思路导航:根据抽屉原理,要保证必有两个或两个以上的苹果放在同一抽屉中,苹果总数至少要比抽屉数多1。这里,我们可以马敬老院老人人数看作抽屉原理中的苹果数,关键是看抽屉数了。

  因为三种水果任选两个的搭配有:苹果——苹果;苹果——橘子;苹果——梨;橘子——橘子;橘子——梨;梨——梨共6种,所以,既然有6个抽屉,必须至少有7个苹果才能保证两个或两个以上的苹果放在同一抽屉里,即至少要7位老人。

小学奥数最新更新
推荐阅读
网站首页 网站地图 返回顶部
无忧考网移动版
京公网安备 11010802026788号