1.小学六年级奥数题目及答案 篇一
某商品76件,出售给33位顾客,每位顾客最多买三件。如果买一件按原定价,买两件降价10%,买三件降价20%,最后结算,平均每件恰好按原定价的85%出售。那么买三件的顾客有多少人?【答案解析】3×(1-20%)+1×100%=340%=4×85%,所以1个买一件的与1个买三件的平均,正好每件是原定价的85%。
由于买2件的,每件价格是原定价的1-10%=90%,所以将买一件的与买三件的一一配对后,仍剩下一些买三件的人,由于
3×(2×90%)+2×(3×80%)=12×85%。
所以剩下的买三件的人数与买两件的人数的比是2:3。
2.小学六年级奥数题目及答案 篇二
1、商场里有甲、乙两种衬衣各1200件,一个星期后,共卖出1750件,还剩多少件?解:1200×2-1750
2、某区优良种子推广站,用200粒玉米种子做发芽试验,结果有14粒没有发芽,求发芽率。
解:(200-14)÷200×100%
3、一台拖拉机耕地,4/5小时耕了5/8公顷,照这样计算,这台拖拉机1小时可以耕地多少公顷?
解:5/8÷4/5
3.小学六年级奥数题目及答案 篇三
已知甲校学生数是乙校学生数的40%,甲校女生数是甲校学生数的30%,乙校男生数是乙校学生数的42%,那么,两校女生数占两校学生总数的百分之()。答案与解析:
考点:百分数的实际应用。
分析:40%和42%的单位“1”是乙校的人数,那么甲校人数就是40%,乙校女生人数就是1-42%;甲校女生数是甲校学生数的30%,那么甲校的女生数就是40%×30%;再用两校的女生人数除以两校的总人数。
解答:解:甲校的女生人数:40%×30%=12%,
乙校的女生人数:1-42%=58%;
(12%+58%)÷(1+40%),
=70%÷140%,
=50%;
答:两校女生数占两校学生总数的百分之50%。
故答案为:50%。
4.小学六年级奥数题目及答案 篇四
有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?【思路导航】根据题意,在7%的糖水中加糖就改变了原来糖水的浓度,糖的质量增加了,糖水的质量也增加了,但水的质量并没有改变。因此,可以先根据原来糖水中的浓度求出水的质量,再根据后来糖水中的浓度求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就是增加的糖的质量。
原来糖水中水的质量:600×(1-7%)=558(克)
现在糖水的质量:558÷(1-10%)=620(克)
加入糖的质量:620-600=20(克)
答:需要加入20克糖。
5.小学六年级奥数题目及答案 篇五
甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为80千米/时和60千米/时。有一辆迎面开来的卡车分别在他们出发后4时、5时、8时先后与甲、乙、丙三辆车相遇。求丙车的速度是多少?分析:卡车与甲车相遇时甲、乙两车之间的距离为(80-60)x4=80千米,即卡车再行1小时与乙相遇,卡车速度为(80-60x1)÷1=20千米/时,此时乙、丙间的距离为S=乙行驶的路程一丙行驶的路程(丙车的速度x5),丙车速度=S÷(8-5)-卡车速度
解:设丙车速度为X。
[(80-60)x4-60x(5-4)]÷(5-4)=20千米/时
60x5一5X=(8-5)x(X十20)
8X=240
X=30
6.小学六年级奥数题目及答案 篇六
题目:一块牧场长满了草,每天均匀生长。这块牧场的'草可供10头牛吃40天,供15头牛吃20天。可供25头牛吃多少天?
答案与解析:
假设1头牛1天吃草的量为1份
(1)每天新生的草量为:(10×40-15×20)÷(40-20)=5(份);
(2)原来的草量为:10×40-40×5=200(份);
(3)安排5头牛专门吃每天新长出来的草,这块牧场可供25头牛吃:200÷(25-5)=10(天)。
7.小学六年级奥数题目及答案 篇七
有一位老师傅,带着他的一位徒弟,接受了装配19台机器的任务。两人一起开始干活,各装各的机器,各自规律不同。师傅每天装配3台,然后休息3天;徒弟每3天装配1台,然后休息1天。照这样下去,要多少天完成任务呢?答案与解析:这师徒两人干活,都是做做歇歇,不能照搬普通工程问题的解法。好在他们的作息日程很有规律:师傅做1天、歇3天;徒弟做3天、歇1天。两个人的工作节奏都是4天一循环。在这4天里,师傅装配了3台机器,徒弟装配了1台机器,共计装配了4台。
总共要装19台机器,而19=4×4+3,所以经过4个循环以后,还剩下3台要装,师傅再干1天就能完成。共计需要的天数是4×4+1=17(天)。
这样就很轻松地得到答案:17天装配完毕。
自然,因为师傅和徒弟各做各的活,最后一天徒弟可以不来上班了。
8.小学六年级奥数题目及答案 篇八
有3个不同的数字,排列3次,组成了3个三位数,这3个三位数相加之和为789,又知运算中没有进位,那么这3个数字连乘所得的积是多少?答案:10或者12
解析:由题意,3个三位数的百位之和为7,十位数之和为8,个位数之和为9,而在每个三位数里,3个数字都各出现了一次。所以我们把百位之和、十位之和、个位之和再加在一起,就应该等于把三个数字各加了3次,也就等于3个数字之和的3倍。由于7+8+9=24,也即3个数字之和的3倍为24,从而3个数字之和为8。
又由题意,3个数字互不相同。而3个数字互不相同,其和又等于8,容易知道3个数字只能是1、2、5或者1、3、4。题目要求3个数字连乘的积,所以答案是1×2×5=10或者1×3×4=12
9.小学六年级奥数题目及答案 篇九
将所有自然数自1开始写下去,得到:1234567891011……试确定在206788个位置上出现的数字。答案与解析:7从1写到9用了9个数字;
从10到99用了2×90=180个数字;
从100到999用了3×900=2700个数字;
从1000到9999用了4×9000=36000个数字;
即从1写到9999共写了9+180+2700+36000=38889个数字。
从10000写到99999用了450000个数字,而450000大于206788,因此206788个位数位置上对应数字所在的自然数在10000与99999之间。因此从10000开始还写了206788-38889=167899个数字。由于10000与99999之间每个自然数占5个数字,因此写到完整自然数应用去5的倍数个数字。考虑到从10000开始一共用到了167899+1=167900个数字。这样一共写了167900÷5=33580个数字,即从10000写到了45579,于是第206789个数字为9,第206788个数字为7。
10.小学六年级奥数题目及答案 篇十
1、甲、乙、丙三人,甲每分钟走20米,乙每分钟走22.5米,丙每分钟走25米。甲、乙从东镇,丙从西镇,同时相向出发,丙遇乙后10分钟再遇甲,求两镇相距多少米?答案与解析:
由题干可知,丙先与乙相遇,再过10分钟与甲相遇,所以丙与乙相遇时,丙与甲的距离为甲、丙在10分钟内相向而行的路程之和:(20+25)*10=450(米),而这段路程正是从出发到乙、丙相遇这段时间里,甲、乙所行的路程之差。所以从出发到乙、丙相遇所用的时间为:450÷(22.5-20)=180(分)。所以,东、西两镇的距离为:(25+22.5)*180=8550(米)。
2、在钟面上5时多少分时,分针与时针在一条直线上,而指向相反?
分析在正5时时,时针与分针相隔150°。然后随时间的消逝,分针先是追上时针,在此时间内,分针需比时针多行走150°,然后超越时针180°就成一条直线且指向相反了。
解360÷12×5=150(度)
(150+180)÷(6-0.5)=60(分)
5时60分即6时正。
答分针与时针在同一条直线上且指向相反时应是5时60分,即6时正。