1. 小升初奥数题及答案 篇一
2. 小升初奥数题及答案 篇二
已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
考点: 列方程解含有两个未知数的应用题;差倍问题。
专题: 和倍问题;列方程解应用题。
分析: 设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据等量关系:“一张桌子比一把椅子多288元”,列出方程即可解答。
解答: 解:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据题意可得方程:
10xx=288,
9x=288,
x=32;
则桌子的价格是:32×10=320(元),
答:一张桌子320元,一把椅子32元。
点评: 此题也可以用算术法计算:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(101)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱,所以:一把椅子的价钱:288÷(101)=32(元)一张桌子的价钱:32×10=320(元);答:一张桌子320元,一把椅子32元。
3. 小升初奥数题及答案 篇三
3箱苹果重45千克,一箱梨比一箱苹果多5千克,3箱梨重多少千克?
考点: 整数、小数复合应用题。
专题: 简单应用题和一般复合应用题。
分析: 可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.据此解答
解答: 解:45+5×3,
=45+15,
=60(千克);
答:3箱梨重60千克。
点评: 本题的关键是先求出3箱梨比3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量。
4. 小升初奥数题及答案 篇四
甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
解:乙每天修的米数:(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)
甲乙两队每天共修的米数:40×2+10=80+10=90(米)
答:两队每天修90米。
5. 小升初奥数题及答案 篇五
李小和张强付同样多的钱买了同一种铅笔,李小要了13支,张强要了7支,李小又给张强0.6元钱,每支铅笔多少钱?
考点: 整数、小数复合应用题。
专题: 简单应用题和一般复合应用题。
分析: 根据两人付同样多的钱买同一种铅笔和李小要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李小要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱,据此解答。
解答: 解:0.6÷[13(13+7)÷2],
=0.6÷[1320÷2],
=0.6÷3,
=0.2(元);
答:每支铅笔0.2元。
点评: 本题的关键是求出李小给张强0.6元钱,是几支铅笔的价钱。
6. 小升初奥数题及答案 篇六
甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河 的两岸,由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点,甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)
考点: 简单的行程问题。
专题: 行程问题。
分析: 根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间.根据两车的速度和行驶的时间可求两车行驶的总路程。
解答: 解:下午2点是14时。
往返用的时间:148=6(时)
两地间路程:(40+45)×6÷2
=85×6÷2,
=255(千米);
答:两地相距255千米。
点评: 解答此题的关键是确定两车行驶的时间,然后再根据公式速度×时间=路程计算出两车行驶的总路程,再除以就是两地相距的距离。
7. 小升初奥数题及答案 篇七
学校组织两个课外兴趣小组去郊外活动,第一小组每小时走4.5千米,第二小组每小时行3.5千米,两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组,多长时间能追上第二小组?
考点: 追及问题。
专题: 行程问题。
分析: 第一小组停下来参观果园时间,第二小组多行了[3.5(4.53.5)]千米,也就是第一组要追赶的路程,又知第一组每小时比第二组快( 4.53.5)千米,由此便可求出追赶的时间。
解答: 解:第一组追赶第二组的路程:
3.5(4.53.5),
=3.51,
=2.5(千米);
第一组追赶第二组所用时间:
2.5÷(4.53.5),
=2.5÷1,
=2.5(小时);
答:第一组2.5小时能追上第二小组。
点评: 此题属于复杂的追击应用题,此类题的解答方法是根据“追及路程÷速度差=追及时间”,代入数值,计算即可
8. 小升初奥数题及答案 篇八
有甲乙两个仓库,每个仓库平均储存粮食32.5吨,甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
考点: 列方程解含有两个未知数的应用题;和倍问题。
专题: 简单应用题和一般复合应用题;和倍问题。
分析: 设乙仓库的存粮是x吨,则甲仓库的存粮是4x5吨,则根据等量关系:“两个仓库的存粮一共有32.5×2=65吨”,由此列出方程解决问题。
解答: 解:设乙仓库的存粮是x吨,则甲仓库的存粮是4x5吨,根据题意可得方程:
x+4x5=32.5×2,
5x=70,
x=14,
则甲仓库存粮:14×45=51(吨),
答:甲仓库有51吨,乙仓库有14吨。
点评: 此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可。
9. 小升初奥数题及答案 篇九
一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。客车的速度和货车的速度分别是多少?
解答:
速度和=(280+200)÷20=24米/秒
速度差=(280+200)÷120=4米/秒
所以客车速度为(24+4)÷2=14米/秒
货车速度为14-4=10米/秒
总结:掌握应用的做题方法,需要练习大量的例题来提高解题能力,本文是小编为您准备的是关于错车问题试题的练习,希望能帮助孩子们在数学竞赛中取得好成绩!
10. 小升初奥数题及答案 篇十
今年张老师的年龄是小华年龄的5倍,过8年,张老师的年龄是小华年龄的3倍,小华今年多少岁?
解:
今年张老师的年龄是小华年龄的5倍,是把今年小华年龄的作为1份,今年张老师的年龄是这样的5份,张老师今年的年龄比小华多5-1=4(份),过8年,张老师的年龄是小华年龄的3倍,是把那时小华的年龄作为1份,张老师那时的年龄是这样的3份,张老师那时的年龄比小华多3-1=2(份)。今年和过8年后张老师与小华年龄差的岁数是相同的,因此过8年的1份是今年的4÷2=2(份),那么,今年的1份的岁数是8÷(2-1)=8(岁),就是今年小华8岁。
答:今年小华8岁。
11. 小升初奥数题及答案 篇十一
某公园里有三棵树,它们的树龄分别由1、2、3、4、5、6这六个数字中的不同的两个数字组成,而且其中一棵的树龄正好是其他两棵树龄和的一半,你知道这三棵树各是多少岁吗?
答案与解析:这道题的实质就是:把1、2、3、4、5、6六个数分成三组,每组两个数,组成二位数,使其中的两个二位数之和等于第三个二位数的2倍。顺便说一下,把生活中的趣味问题转化成为纯数学型的题目是一种重要的本领,同学们要从小就注意增强这种能力,以便将来能够运用数学知识解决实际工作中遇到的难题。
仔细观察、大胆尝试,将这六个数分组、组合,可得出的三个数是:12,34,56,因为12+56=34×2
即这三棵树的树龄是12岁、34岁、56岁。这道题有几种不同的答案,请你动动脑筋找出另外的答案。
12. 小升初奥数题及答案 篇十二
年龄问题题目:(中等难度)
甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?
年龄问题题目答案:
如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188。如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。同样,这时丙的年龄也是乙两倍。
所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁)。
13. 小升初奥数题及答案 篇十三
6年前,母亲的年龄是儿子的5倍。6年后母子年龄和是78岁。问:母亲今年多少岁?
答案与解析:6年后母子年龄和是78岁,可以求出母子今年年龄和是78-6×2=66(岁)。6年前母子年龄和是66-6×2=54(岁)。又根据6年前母子年龄和与母亲年龄是儿子的5倍,可以求出6年前母亲年龄,再求出母亲今年的年龄。
解母子今年年龄和:78-6×2=66(岁)
母子6年前年龄和:66-6×2=54(岁)
母亲6年前的年龄:54÷(5+1)×5=45(岁)
母亲今年的年龄:45+6=51(岁)
答:母亲今年是51岁。
14. 小升初奥数题及答案 篇十四
某个团队现有4个成员。他们的年龄各不相同,总和是129岁,其中有3个人的年龄是平方数。如果倒退15年,这4人中仍有3人的年龄是平方数。你知道他们各自的年龄吗?
答案与解析:因为4个人年龄可以倒退15年,所以,每个人的年龄都应大于15岁;
因为他们的年龄总和是129,所以,年龄大的也不会超129-3*(16+17+18)=78岁。
有3个人的年龄是平方数。
那么,这3个人的年龄只可能是16、25、36、49、64。
新的小学六年级奥数题及答案《年龄趣题》:在这5个数中,只有16、34减去15后,仍然还是一个数的平方数,
所以,一定有1人是16岁,有1人是64岁。
另外2人的年龄和是:129-16-64=49
在这里有1人年龄是个平方数,而另一个人的年龄不低于16岁,经比较可知,一个人的年龄是25岁,后一个人的年龄是24岁。
经检验,24-15=9 9刚好是一个平方数,与题意相符。
所以。他们4人年龄分别是:16、24、25、64
15. 小升初奥数题及答案 篇十五
已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)
一张桌子的价钱:32×10=320(元)
答:一张桌子320元,一把椅子32元。
16. 小升初奥数题及答案 篇十六
甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。
解:4×2÷4=8÷4=2(千米)
答:甲每小时比乙快2千米。
17. 小升初奥数题及答案 篇十七
李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
解:0.6÷[13-(13+7)÷2]=0.6÷[13-20÷2]=0.6÷3=0.2(元)
答:每支铅笔0.2元。
18. 小升初奥数题及答案 篇十八
甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)
想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。
解:下午2点是14时。
往返用的时间:14-8=6(时)
两地间路程:(40+45)×6÷2=85×6÷2=255(千米)
答:两地相距255千米。
19. 小升初奥数题及答案 篇十九
学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快(4.5-3.5)千米,由此便可求出追赶的时间。
解:第一组追赶第二组的路程:
3.5-(4.5-3.5)=3.5-1=2.5(千米)
第一组追赶第二组所用时间:
2.5÷(4.5-3.5)=2.5÷1=2.5(小时)
答:第一组2.5小时能追上第二小组。
20. 小升初奥数题及答案 篇二十
有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。
解:乙仓存粮:(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)
甲仓存粮:14×4-5=56-5=51(吨)
答:甲仓存粮51吨,乙仓存粮14吨。
京公网安备 11010802026788号