首页>初一>导航 > 最新信息

初一数学知识点总结(10篇)

2025-09-17 21:18:00 来源:无忧考网
【导语】初一数学虽然难度增加,但只要学生能够适应新的学习方式和内容,保持良好的学习习惯,积极面对挑战,初一数学其实并不难。关键是学生要有信心,不怕困难,愿意投入时间和精力去学习和探索。以下是©无忧考网整理的《初一数学知识点总结(10篇)》,希望对您有所帮助。

1.  初一数学知识点总结 篇一


  1、数轴的概念

  规定了原点,正方向,单位长度的直线叫做数轴。

  注意:

  ⑴数轴是一条向两端无限延伸的直线;

  ⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;

  ⑶同一数轴上的单位长度要统一;

  ⑷数轴的三要素都是根据实际需要规定的。

  2、数轴上的.点与有理数的关系

  ⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

  ⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

  3、利用数轴表示两数大小

  ⑴在数轴上数的大小比较,右边的数总比左边的数大;

  ⑵正数都大于0,负数都小于0,正数大于负数;

  ⑶两个负数比较,距离原点远的数比距离原点近的数小。

  4、数轴上特殊的(小)数

  ⑴小的自然数是0,无的自然数;

  ⑵小的正整数是1,无的正整数;

  ⑶的负整数是—1,无小的负整数

  5、a可以表示什么数

  ⑴a>0表示a是正数;反之,a是正数,则a>0;

  ⑵a<0表示a是负数;反之,a是负数,则a<0

  ⑶a=0表示a是0;反之,a是0,则a=0

2. 初一数学知识点总结 篇二


  第一章有理数

  (一)正负数

  1.正数:大于0的数。

  2.负数:小于0的数。

  3.0即不是正数也不是负数。

  4.正数大于0,负数小于0,正数大于负数。

  (二)有理数

  1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整数之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

  2.整数:正整数、0、负整数,统称整数。

  3.分数:正分数、负分数。

  (三)数轴

  1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

  2.数轴的三要素:原点、正方向、单位长度。

  3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

  4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。

  (四)有理数的加减法

  1.先定符号,再算绝对值。

  2.加法运算法则:同号相加,取相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

  3.加法交换律:a+b= b+ a两个数相加,交换加数的位置,和不变。

  4.加法结合律:(a+b)+ c = a +(b+ c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  5.ab = a +(b)减去一个数,等于加这个数的相反数。

  (五)有理数乘法(先定积的符号,再定积的大小)

  1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  2.乘积是1的两个数互为倒数。

  3.乘法交换律:ab= ba

  4.乘法结合律:(ab)c = a(b c)

  5.乘法分配律:a(b +c)= a b+ ac

  (六)有理数除法

  1.先将除法化成乘法,然后定符号,后求结果。

  2.除以一个不等于0的数,等于乘这个数的倒数。

  3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

  (七)乘方

  1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)

  2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

  (八)有理数的加减乘除混合运算法则

  1.先乘方,再乘除,后加减。

  2.同级运算,从左到右进行。

  3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  (九)科学记数法、近似数、有效数字。

  第二章整式

  (一)整式

  1.整式:单项式和多项式的统称叫整式。

  2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

  3.系数:一个单项式中,数字因数叫做这个单项式的系数。

  4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

  5.多项式:几个单项式的和叫做多项式。

  6.项:组成多项式的每个单项式叫做多项式的项。

  7.常数项:不含字母的项叫做常数项。

  8.多项式的次数:多项式中,次数高的项的次数叫做这个多项式的次数。

  9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  10.合并同类项:把多项式中的'同类项合并成一项,叫做合并同类项。

  (二)整式加减

  整式加减运算时,如果遇到括号先去括号,再合并同类项。

  1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

  合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

  第三章一元方程

  分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

  (一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。

  (二)一元方程:

  1.一元方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元方程。

  2.解:求出的方程中未知数的值叫做方程的解。

  (二)等式的性质

  1.等式两边加(或减)同一个数(或式子),结果仍相等。

  如果a= b,那么a± c= b± c

  2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  如果a= b,那么a c= b c;

  如果a= b,(c0),那么a ∕c = b ∕ c。

  (三)解方程的步骤

  解一元方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。

  1.去分母:把系数化成整数。

  2.去括号

  3.移项:把等式一边的某项变号后移到另一边。

  4.合并同类项

  5.系数化为1

  第四章图形认识初步

  一、图形认识初步

  1.几何图形:把从实物中抽象出来的各种图形的统称。

  2.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。

  3.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。

  4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

  5.点,线,面,体

  ①图形是由点,线,面构成的。

  ②线与线相交得点,面与面相交得线。

  ③点动成线,线动成面,面动成体。

  二、直线、线段、射线

  1.线段:线段有两个端点。

  2.射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。

  3.直线:将线段的两端无限延长就形成了直线。直线没有端点。

  4.两点确定一条直线:经过两点有一条直线,并且只有一条直线。

  5.相交:两条直线有一个公共点时,称这两条直线相交。

  6.两条直线相交有一个公共点,这个公共点叫交点。

  7.中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。

  8.线段的性质:两点的所有连线中,线段短。(两点之间,线段短)

  9.距离:连接两点间的线段的长度,叫做这两点的距离。

  三、角

  1.角:有公共端点的两条射线组成的图形叫做角。

  2.角的度量单位:度、分、秒。

  3.角的度量与表示:

  ①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

  ②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。

  4.角的比较:

  ①角也可以看成是由一条射线绕着他的端点旋转而成的。

  ②平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。

  ③平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  ④工具:量角器、三角尺、经纬仪。

  5.余角和补角

  ①余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。

  ②补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。

  ③补角的性质:等角的补角相等

  ④余角的性质:等角的余角相等

3. 初一数学知识点总结 篇三


  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类:①整数②分数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的'特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.

  有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数-小数>0,小数-大数<0.

4. 初一数学知识点总结 篇四


  有理数

  1.1 正数与负数

  在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

  与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

  1.2 有理数

  正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

  整数和分数统称有理数(rational number)。

  通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

  数轴三要素:原点、正方向、单位长度。

  在直线上任取一个点表示数0,这个点叫做原点(origin)。

  只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

  数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的.原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项大公约数。②相同字母取低次幂③系数大公约数与相同字母取低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

5. 初一数学知识点总结 篇五


  第一章:有理数

  ★0既不是正数,也不是负数。0是正数和负数的分界。★整数的概念:正整数、0、负整数统称为整数。★分数的概念:正负数和负分数统称为分数。★有理数的概念:整数和分数统称为有理数。

  ★数轴的概念:规定了原点、正方向、单位长度的一条直线叫数轴。

  (1)在直线上任意取一点表示数0,这个点叫做原点;

  (2)通常规定直线上从原点向右(上)为正方向,从原点向左(或下)为负方向;

  (3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,

  依次表示1,2,3,---;从原点向左,用类似的方法依次表示-1,-2,-3。

  ★相反数的概念:只有符号不同的两个数叫做互为相反数。0的相反数是0。互为相反数的两个点关于原点对称。

  ★绝对值的概念:一般地,数轴上表示数的a的点与原点的距离叫做数a的绝对值。记作a。

  由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

  ★有理数比较大小:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。所以由这个规定可知:

  (1)正数大于0,0大于负数;正数大于负数;

  (2)两个负数,绝对值大的反而小。

  备注:异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值。

  ★有理数加法法则:

  1、同号两数相加,取相同的符号,并把绝对值相加。

  2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  3、一个数同0相加,仍是这个数。

  ★有理数的加法中,两个数相加,交换加数的位置,和不变。加法交换律:a+b=b+a.★有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。加法结合律:(a+b)+c=a+(b+c)。【结合原则:同号结合;同分母结合;互为相反数结合;凑整结合。】

  ★有理数减法法则:减去一个数,就等于加上这个数的相反数。即:a-b=a+(-b).

  ★有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。

  备注:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

  ★有理数中仍然有:乘积是1的两个数互为倒数。

  ★一般地,有理数乘法中,两个数相乘,交换因数的位置,积不变。乘法交换率:abba;三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。乘法结合律:(ab)ca(bc)。

  ★一般地,一个数同两个数的和相乘,等于把这个数分别同中两个数相乘,再把积相加。分配律:a(bc)abac

  ★有理数除法法则:除以一个不等于0的数,等于乘上这个数的倒数。

  备注:从有理数除法法则容易得出:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

  ★有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a的n次方也可以读作a的n次幂。

  备注:负数的奇次幂是负数,负数的偶次幂是正数。

  正数的任何次幂都是正数。0的任何正整数次幂都是0。

  ★有理数的混合运算,应注意以下运算顺序:先乘方,再乘除,后加减。2。同级运算,从左到右依次计算。3。如有括号,先做括号内的运算,按小括号、中括号、大括号依次计算。

  ★科学计数法:把一个大于10的数表示成ax10(其中a是整数数位只有一位的数,n是正整数)

  ★近似数与准确数的接近程度,可以用精确度表示。

  ★有效数字:从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。

  第二章:整式的加减(为一元方程的学习打下基础)

  ◆单项式概念:比如100t、a的平方、2.5x、vt,-n,它们都是数或者字母的积,像这样的式子叫做单项式。单独的一个数或一个字母也是单项式。单项式中数字因数叫做这个单项式的系数。

  ◆一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  ◆多项式的概念:几个单项式的和叫做多项式。其中每个单项式叫做多项式的项,不存在字母的项叫做常数项。

  ◆多项式里次数高项的次数,叫做这个多项式的次数。◆整式的概念:单项式与多项式统称整式。

  ◆同类项概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。

  ◆把多项式中的同类项合并成一项,叫做合并同类项。

  ◆合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母部分不变。◆去括号法则:

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  第三章:一元方程

  ▲含有未知数的等式叫方程(equation)。

  ▲使方程左右两边相等的未知数的值,叫做方程的解(solution)。▲只含有一个未知数(元),未知数的'次数都是1,这样的方程叫做一元方程。▲等式的性质:1、等式两边加(或减)同一个数(或式子),结果仍相等。

  2、等式;两边乘同一个数,或除以同一个不为0的数,结果仍相等。▲用一元方程分析和解决实际问题的基本过程如下:

  (实际问题)设未知数,列方程数学问题(一元方程)解方程(数学问题的解)检验(实际问题的答案)。

  ▲解方程的具体步骤:1、去分母(方程两边同乘各分母的小公倍数);2、去括号(去括号法则);3、移项(定义);4、合并同类项(法则,同类项的定义);5、系数化为1。

  ▲实际问题与一元方程:一元方程是简单的方程。运用方程解决问题的关键是分析问题中的数量关系,找出其中的相等关系,并由此列出方程。

  第四章:图形认识的初步

  ※我们把从实物中抽象出的各种图形统称为几何图形。几何图形是数学研究的主要对象

  之一。几何图形又分为立体图形和平面图形。

  ※长方体、正方体、圆柱、圆锥、球、棱锥等都是几何体。几何体也简称体(solid)。包围着体的是面(surface)。面有平面和曲面。

  ※几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。※经过两点有一条直线,并且只有一条直线。简述:两点确定一条直线。※直线一般用1个小写字母表示或者用直线上的两个大写字母表示。※射线和线段都是直线的一部分。类似于直线的表示。

  ※两点的所有连线中,线段短。简述:两点之间,线段短。※连接两点间的线段的长度,叫做中两点的距离(distance)。

  ※在国际单位制中,长度的基本单位是米(m)。常用的单位还有千米、分米、厘米、毫米、微米等。

  1纳米等于十亿分之一米。

  ※在天文学上,常用天文单位和光年计算星体间的距离。1天文单位是地球到太阳的平812

  均距离,约1.5x10千米,1光年就是光1年走过的距离,约等于9.46x10千米。

  ※航海上经常用到的长度单位海里(1海里=1852米);※有公共端点的两条射线组成的图形叫做角(angle)。这个公共点叫做角的顶点,这两条射线是角的两条边。

  ※我们常用量角器量角,度(degree)、分、秒是常用的角的度量单位。

  ※角的度、分、秒是60进制的。以度、分、秒为单位的角的度量制,叫做角度制。※常用的量角工具有,量角器,工程常用的经纬仪。

  ※从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

  ※余角(complementaryangle):如果两个角的和等于90度(直角),就说中这两个角互为余角,即其中每一个角是另一个角的余角。余角的性质:等角的余角相等。

  ※补角(supplementaryangle):如果两个角的和等于180度(平角),就说这两个角互为补角,其中一个角是另一个角的补角。补角的性质:等角的补角相等。

  ※上北下南;左西右东。西北,即是北偏西45度。

  第五章平行线与相交线

  一.台球桌面上的角

  ※1.互为余角和互为补角的有关概念与性质

  如果两个角的和为90°(或直角),那么这两个角互为余角;如果两个角的和为180°(或平角),那么这两个角互为补角;

  注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。

  它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。

  二.探索直线平行的条件

  ※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。

  三.平行线的特征

  ※平行线的特征即平行线的性质定理,共有三条:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

  四.用尺规作线段和角※

  1.关于尺规作图

  尺规作图是指只用圆规和没有刻度的直尺来作图。

  ※2.关于尺规的功能

  直尺的功能是:在两点间连接一条线段;将线段向两方向延长。

  圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。

6. 初一数学知识点总结 篇六


  平方根:

  ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数A的`平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:

  ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

  ③每一个实数都可以在数轴上的一个点来表示。

7. 初一数学知识点总结 篇七


  一、有理数

  概念、定义:

  1、大于0的数叫做正数(positive number)。

  2、在正数前面加上负号“—”的数叫做负数(negative number)。

  3、整数和分数统称为有理数(rational number)。

  4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

  5、在直线上任取一个点表示数0,这个点叫做原点(origin)。

  6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

  7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

  8、正数大于0,0大于负数,正数大于负数。

  9、两个负数,绝对值大的反而小。

  10、有理数加法法则

  (1)同号两数相加,取相同的符号,并把绝对值相加。

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

  (3)一个数同0相加,仍得这个数。

  11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

  12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  13、有理数减法法则

  减去一个数,等于加上这个数的相反数。

  14、有理数乘法法则

  两数相乘,同号得正,异号得负,并把绝对值向乘。

  任何数同0相乘,都得0。

  15、有理数中仍然有:乘积是1的两个数互为倒数。

  16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

  17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

  18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

  19、有理数除法法则

  除以一个不等于0的数,等于乘这个数的倒数。

  20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

  21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an中,a叫做底数(basenumber),n叫做指数(exponeht)

  22、根据有理数的乘法法则可以得出

  负数的奇次幂是负数,负数的偶次幂是正数。

  显然,正数的任何次幂都是正数,0的任何次幂都是0。

  23、做有理数混合运算时,应注意以下运算顺序:

  (1)先乘方,再乘除,后加减;

  (2)同级运算,从左到右进行;

  (3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  24、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。

  25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

  26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)

  注:黑体字为重要部分

  二、整式的加减

  概念、定义:

  1、都是数或字母的.积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。

  2、单项式中的数字因数叫做这个单项式的系数(coefficient)。

  3、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。

  4、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantlyterm)。

  5、多项式里次数高项的次数,叫做这个多项式的次数(degree of a polynomial)。

  6、把多项式中的同类项合并成一项,叫做合并同类项。

  合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

  7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

  三、一元方程

  概念、定义:

  1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。

  2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元方程(linear equation withone unknown)。

  3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

  4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

  5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

  6、把等式一边的某项变号后移到另一边,叫做移项。

  7、应用:行程问题:s=v×t工程问题:工作总量=工作效率×时间

  盈亏问题:利润=售价—成本利率=利润÷成本×100%

  售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间

  本息和=本金+利息

  四、图形初步认识

  概念、定义:

  1、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。

  2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure)。

  3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure)。

  4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net)。

  5、几何体简称为体(solid)。

  6、包围着体的是面(surface),面有平的面和曲的面两种。

  7、面与面相交的地方形成线(line),线和线相交的地方是点(point)。

  8、点动成面,面动成线,线动成体。

  9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

  简述为:两点确定一条直线(公理)。

  10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection)。

  11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center)。

  12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段短。简单说成:两点之间,线段短。(公理)

  13、连接两点间的线段的长度,叫做这两点的距离(distance)。

  14、角∠(angle)也是一种基本的几何图形。

  15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。

  16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector)。

  17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary

  angle),即其中的每一个角是另一个角的余角。

  18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementary

  angle),即其中一个角是另一个角的补角

  19、等角的补角相等,等角的余角相等。

8. 初一数学知识点总结 篇八


  第五章《相交线与平行线》

  一、知识点

  5.1相交线5.1.1相交线

  有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

  两条直线相交有4对邻补角。

  有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。

  5.1.2两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

  注意:⑴垂线是一条直线。

  ⑵具有垂直关系的两条直线所成的4个角都是90。

  ⑶垂直是相交的特殊情况。

  ⑷垂直的记法:a⊥b,AB⊥CD。

  画已知直线的垂线有无数条。

  过一点有且只有一条直线与已知直线垂直。

  连接直线外一点与直线上各点的所有线段中,垂线段短。简单说成:垂线段短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

  5.2平行线5.2.1平行线

  在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。在同一平面内两条直线的关系只有两种:相交或平行。

  平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

  如果两条直线都与第三条直线平行,那么这两条直线也互相平行。5.2.2直线平行的条件

  两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。

  两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。判定两条直线平行的方法:

  方法1两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

  方法2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

  方法3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

  5.3平行线的性质

  平行线具有性质:

  性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

  性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。判断一件事情的语句叫做命题。5.4平移

  ⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

  ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。

  图形的这种移动,叫做平移变换,简称平移。

  第六章《平面直角坐标系》

  一、知识点

  6.1平面直角坐标系

  6.1.1有序数对

  有顺序的两个数a与b组成的数对,叫做有序数对。

  6.1.2平面直角坐标系

  平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

  平面上的任意一点都可以用一个有序数对来表示。

  建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。

  6.2坐标方法的简单应用

  6.2.1用坐标表示地理位置

  利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:

  ⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;

  ⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;

  ⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。6.2.2用坐标表示平移

  在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。

  在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

  第七章《三角形》

  一、知识点

  7.1与三角形有关的线段

  7.1.1三角形的边

  由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的'角。

  顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。三角形两边的和大于第三边。7.1.2三角形的高、中线和角平分线7.1.3三角形的稳定性

  三角形具有稳定性。7.2与三角形有关的角7.2.1三角形的内角

  三角形的内角和等于180。

  7.2.2三角形的外角

  三角形的一边与另一边的延长线组成的角,叫做三角形的外角。三角形的一个外角等于与它不相邻的两个内角的和。三角形的一个外角大于与它不相邻的任何一个内角。

  7.3多边形及其内角和7.3.1多边形

  在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。n边形的对角线公式:

  n(n-3)2各个角都相等,各条边都相等的多边形叫做正多边形。

  7.3.2多边形的内角和

  n边形的内角和公式:180(n-2)多边形的外角和等于360。

  7.4课题学习镶嵌

  1三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。☆2判断三条线段能否组成三角形。

  ①a+b>c(ab为短的两条线段)②a-b

  a-b

  进而求得这个二元方程组的解。这种方法叫做代入消元法,简称代入法。

  两个二元方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元方程。这种方法叫做加减消元法,简称加减法。

  第九章《不等式与不等式组》

  一、知识点

  9.1不等式

  9.1.1不等式及其解集

  用“<”或“>”号表示大小关系的式子叫做不等式。使不等式成立的未知数的值叫做不等式的解。

  能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。含有一个未知数,未知数的次数是1的不等式,叫做一元不等式。

  9.1.2不等式的性质

  不等式有以下性质:

  不等式的性质1不等式两边加(或减)同一个数(或式子),不等号的方向不变。不等式的性质2不等式两边乘(或除以)同一个正数,不等号的方向不变。不等式的性质3不等式两边乘(或除以)同一个负数,不等号的方向改变。9.2实际问题与一元不等式

  解一元方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。

  9.3一元不等式组

  把两个不等式合起来,就组成了一个一元不等式组。

  几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。

  对于具有多种不等关系的问题,可通过不等式组解决。解一元不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。9.4课题学习利用不等关系分析比赛。

9. 初一数学知识点总结 篇九


  第一章丰富的图形世界

  1、几何图形

  从实物中抽象出来的各种图形,包括立体图形和平面图形。

  2、点、线、面、体

  (1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形中基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。

  (2)点动成线,线动成面,面动成体。

  3、生活中的立体图形

  生活中的立体图形

  柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

  第二章数值

  1、理数

  正有理数整数

  有理数零有理数

  负有理数分数

  2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零。

  3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

  4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。

  5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=—a,则a≤0。

  正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。

  6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

  7、有理数的运算:

  (1)五种运算:加、减、乘、除、乘方

  多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

  有理数加法法则:

  同号两数相加,取相同的符号,并把绝对值相加。

  异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

  一个数同0相加,仍得这个数。

  互为相反数的两个数相加和为0。

  有理数减法法则:减去一个数,等于加上这个数的相反数!

  有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数与0相乘,积仍为0。

  有理数除法法则:

  两个有理数相除,同号得正,异号得负,并把绝对值相除。

  0除以任何非0的数都得0。

  注意:0不能作除数。

  有理数的乘方:求n个相同因数a的积的运算叫做乘方。

  正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

  (2)有理数的运算顺序

  先算乘方,再算乘除,后算加减,如果有括号,先算括号里面的。

  (3)运算律

  加法交换律加法结合律

  乘法交换律乘法结合律

  乘法对加法的分配律

  8、科学记数法

  一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1)

  第三章整式及其加减

  1、代数式

  用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

  注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

  ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

  ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

  代数式的书写格式:

  ①代数式中出现乘号,通常省略不写,如vt;

  ②数字与字母相乘时,数字应写在字母前面,如4a;

  ③带分数与字母相乘时,应先把带分数化成假分数,如应写作;

  ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

  ⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a—4)应写作;注意:分数线具有“÷”号和括号的双重作用。

  ⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。

  2、整式:单项式和多项式统称为整式。

  ①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

  注意:1。单独的一个数或一个字母也是单项式;2。单独一个非零数的次数是0;3。当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。

  ②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数高的项的次数叫做多项式的次数。

  3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  注意:①同类项有两个条件:a。所含字母相同;b。相同字母的指数也相同。

  ②同类项与系数无关,与字母的排列顺序无关;

  ③几个常数项也是同类项。

  4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。

  5、去括号法则

  ①根据去括号法则去括号:

  括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。

  ②根据分配律去括号:

  括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。

  6、添括号法则

  添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。

  7、整式的运算:

  整式的加减法:(1)去括号;(2)合并同类项。

  第四章基本平面图形

  2、直线的性质

  (1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

  (2)过一点的直线有无数条。

  (3)直线是是向两方面无限延伸的.,无端点,不可度量,不能比较大小。

  3、线段的性质

  (1)线段公理:两点之间的所有连线中,线段短。(两点之间线段短。)

  (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

  (3)线段的大小关系和它们的长度的大小关系是一致的。

  4、线段的中点:

  点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB(或AB=2AM=2BM)。

  5、角:

  有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

  6、角的表示

  角的表示方法有以下四种:

  ①用数字表示单独的角,如∠1,∠2,∠3等。

  ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

  ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

  ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

  注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

  7、角的度量

  角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

  把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

  1°=60’,1’=60”

  8、角的平分线

  从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  9、角的性质

  (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

  (2)角的大小可以度量,可以比较,角可以参与运算。

  10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

  11、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

  从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n—3)条对角线,把这个n边形分割成(n—2)个三角形。

  12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

  圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。

  第五章一元方程

  1、方程

  含有未知数的等式叫做方程。

  2、方程的解

  能使方程左右两边相等的未知数的值叫做方程的解。

  3、等式的性质

  (1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

  (2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

  4、一元方程

  只含有一个未知数,并且未知数的高次数是1的整式方程叫做一元方程。

  5、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。

  6、解一元方程的一般步骤:

  (1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1

  第六章数据的收集与整理

  1、普查与抽样调查

  为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

  从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

  2、扇形统计图

  扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

  圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

  3、频数直方图

  频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

  4、各种统计图的特点

  条形统计图:能清楚地表示出每个项目的具体数目。

  折线统计图:能清楚地反映事物的变化情况。

  扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

10. 初一数学知识点总结 篇十


  第一章整式的运算

  一、单项式、单项式的次数:

  只含有数字与字母的积的代数式叫做单项式。单独的一个数或一个字母也是单项式。一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  二、多项式

  多项式、多项式的次数、项几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数高的项的次数,叫做这个多项式的次数。

  三、整式:单项式和多项式统称为整式。

  四、整式的加减法:

  整式加减法的一般步骤:

  (1)去括号;

  (2)合并同类项。

  五、幂的运算性质:

  1、同底数幂的乘法:a

  2、幂的乘方:

  3、积的乘方:

  4、同底数幂的除法:

  六、零指数幂和负整数指数幂:

  1、零指数幂:

  2、负整数指数幂:

  七、整式的乘除法:

  1、单项式乘以单项式:

  法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

  2、单项式乘以多项式:

  法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

  3、多项式乘以多项式:

  多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

  4、单项式除以单项式:

  单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

  5、多项式除以单项式:

  多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  八、整式乘法公式:

  1、平方差公式:2、完全平方公式:

  第二章平行线与相交线

  一、余角和补角:

  1、余角:

  定义:如果两个角的和是直角,那么称这两个角互为余角。

  性质:同角或等角的余角相等。

  2、补角:

  定义:如果两个角的和是平角,那么称这两个角互为补角。

  性质:同角或等角的补角相等。

  二、对顶角:

  我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角。

  对顶角的性质:对顶角相等。

  三、同位角、内错角、同旁内角:

  直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

  四、平行线的判定:

  1、两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。

  2、两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。

  3、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。

  补充平行线的判定方法:

  (1)平行于同一条直线的两直线平行。

  (2)在同一平面内,垂直于同一条直线的两直线平行。

  (3)平行线的定义。

  五、平行线的性质:

  (1)两直线平行,同位角相等。

  (2)两直线平行,内错角相等。

  (3)两直线平行,同旁内角互补。

  六、尺规作图:

  1、作一条线段等于已知线段。

  2、作一个角等于已知角。

  第三章生活中的数据

  一、科学记数法:

  一般地,一个绝对值较小的数可以表示成a10的形式,其中1a10,n是负整数。

  二、近似数和有效数字:

  1、近似数:

  利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

  2、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个近似数的有效数字。

  三、形象统计图:

  第四章概率

  一、事件发生的可能性;

  人们通常用1(或100)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。

  二、游戏是否公平:

  游戏对双方公平是指双方获胜的可能性相同。

  三、摸到红球的概率:

  1、概率的意义

  P(摸到红球=

  摸到红球可能出现的结果数

  摸出一球可能出现的结果数2、确定事件和不确定事件的概率:

  (1)必然事件发生的概率为1记作P(必然事件)=1(2)不可能事件发生的概率为0,P(不可能事件)=0(3)如果A为不确定事件,那么0

  (2)三角形按角分类:

  直角三角形(有一个角为直角的三角形)

  三角形锐角三角形(三个角都是锐角的三角形)斜三角形

  钝角三角形(有一个角为钝角的三角形)

  把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

  7、三角形的三种重要线段:(1)三角形的角平分线:

  定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

  性质:三角形的三条角平分线交于一点。交点在三角形的内部。(2)三角形的中线:

  定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。性质:三角形的三条中线交于一点,交点在三角形的内部。(3)三角形的`高线:

  定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

  性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部;

  8、三角形的面积:

  三角形的面积=

  1×底×高2二、全等图形:

  定义:能够完全重合的两个图形叫做全等图形。性质:全等图形的形状和大小都相同。三、全等三角形

  1、全等三角形及有关概念:

  能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

  2、全等三角形的表示:

  全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、全等三角形的性质:全等三角形的对应边相等,对应角相等。4、三角形全等的判定:

  (1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

  (2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)直角三角形全等的判定:

  对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

  第六章变量之间的关系

  1、变量、自变量、因变量:2、函数的三种表示法:

  (1)关系式法(2)列表法

  (3)图像法

  第五章生活中的轴对称

  一、轴对称

  1、轴对称图形:

  如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

  2、轴对称:

  对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。

  3、性质:

  (1)对应点所连的线段被对称轴垂直平分

  (2)对应线段相等,对应角相等。

  二、角平分线的性质:

  角平分线上的点到这个角的两边的距离相等。

  三、线段的垂直平分线(简称中垂线):

  定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。性质:线段垂直平分线上的点到这条线段两个端点的距离相等。四、等腰三角形

  1、等腰三角形:有两条边相等的三角形叫做等腰三角形。

  2、等腰三角形的性质:

  (1)等腰三角形的两个底角相等

  (2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),

  (3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。

  3、等腰三角形的判定:

  (1)有两条边相等的三角形是等腰三角形。

  (2)如果一个三角形有两个角相等,那么它们所对的边也相等五、等边三角形:

  1、等边三角形:三边都相等的三角形叫做等边三角形。2、等边三角形的性质:

  (1)具有等腰三角形的所有性质。

  (2)等边三角形的各个角都相等,并且每个角都等于60°。

  3、等边三角形的判定

  (1)三边都相等的三角形是等边三角形。

  (2):三个角都相等的三角形是等边三角形

  (3):有一个角是60°的等腰三角形是等边三角形。

初一最新更新
推荐阅读
网站首页 网站地图 返回顶部
无忧考网移动版
京公网安备 11010802026788号