首页>初三>导航 > 最新信息

北师大版九年级下册数学知识点汇总

2024-03-13 16:46:00 来源:无忧考网

导语】学业的精深造诣来源于勤奋好学,只有好学者,才能在无边的知识海洋里猎取到真智才学,只有真正勤奋的人才能克服困难,持之以恒,不断开拓知识的领域,武装自己的头脑,成为自己的主宰,让我们勤奋学习,持之以恒,成就自己的人生,让自己的青春写满无悔!©无忧考网搜集的《北师大版九年级下册数学知识点汇总》,希望对同学们有帮助。



1.北师大版九年级下册数学知识点汇总 篇一


  第二十二章一元二次方程

  1、定义:形如:ax2+bx+c=0(a≠0)的方程叫一元二次方程。

  ①是整式方程,②未知数的次数是二次,③只含有一个未知数,④二次项系数不为零。

  2、化为一元二次方程的一般形式:按降幂排列,二次项系数通常为正,右端为零。

  3、一元二次方程的根:代入使方程成立。

  4、一元二次方程的解法:

  ①配方法:移项→二次项系数化为一→两边同时加上一次项系数的一半→配方→开方→写出方程的解。

  ②公式法:x=(-b±√b2-4ac)/2a;

  ③因式分解法:右端为零,左端分解为两个因式的乘积。

  5、一元二次方程的根的判别式①当△>0时,方程有两个不相等的实数根;

  ②当△=0时,方程有两个相等的实数根,③当△<0时,方程没有实数根。

  注意:应用的前提条件是:a≠0;

  6、一元二次方程根与系数的关系:x1+x2=-b/a,x1*x2=c/a;

  注意:应用的前提条件是:a≠0,△≥0;

  7、列方程解应用题:审题设元→列代数式、列方程→整理成一般形式→解方程→检验作答。

2.北师大版九年级下册数学知识点汇总 篇二


  第二十三章旋转

  1、旋转的三要素:旋转中心,旋转方向,旋转角。

  2、旋转的性质:①对应点到旋转中心的距离相等,②对应点与旋转中心所连线段的夹角等于旋转角,③旋转前、后的图形全等。

  关键:找好对应线段、对应角。

  3、中心对称:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称。

  4、中心对称的性质:①关于中心对称的两个图形,对应点所连线段都经过对称中心,而且被对称中心所平分。②关于中心对称的两个图形是全等形。

  5、中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。

  6、对称点的坐标规律:①关于x轴对称:横坐标不变,纵坐标互为相反数,②关于y轴对称:横坐标互为相反数,纵坐标不变,③关于原点对称:横坐标、纵坐标都互为相反数。

3.北师大版九年级下册数学知识点汇总 篇三


  第二十四章圆

  1、确定圆的条件:圆心→位置,半径→大小。

  2、和圆有关的概念:弦---直径,弧—半圆、优弧、劣弧,圆心角,圆周角,弦心距。

  3、圆的对称性:圆既是轴对称图形,又是中心对称图形。

  4、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

  推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

  5、圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,弦的弦心距相等。

  引申:在这四组量中,只要有一组量对应相等,其余各组量都相等。

  6、圆周角定理:①圆周角等于同弧所对的圆心角的一半;

  ②在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;相等的圆周角所对的弧相等;

  ③半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

  7、内心和外心:①内心是三角形内角平分线的交点,它到三角形三边的距离相等。

  ②外心是三角形三边垂直平分线的交点,它到三角形三个顶点的距离相等。

  8、直线和圆的位置关系:相交→d

  9、切线的判定:“有点连圆心”→证垂直。“无点做垂线”→证d=r。

  切线的性质:圆的切线垂直于经过切点的半径。

  10、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

  11、圆内接四边形的性质:圆内接四边形的对角互补,每一个外角等于它的内对角。

  12、圆外切四边形的性质:圆外切四边形的对边之和相等。

  13、圆和圆的位置关系:外离→d>R+r;外切→d=R+r;相交→R-r;

  14、正多边形和圆:半径→外接圆的半径,中心角→每一边所对的圆心角,边心距→中心到一边的距离。

  15、弧长和扇形面积:L=n∏R/180.S扇形=n∏R2/360。

  16、圆锥的侧面积和全面积:圆锥的母线长=扇形的半径,圆锥底面圆周长=扇形弧长,圆锥的侧面积=扇形面积,圆锥的全面积=扇形面积+底面圆面积。

4.北师大版九年级下册数学知识点汇总 篇四


  第二十五章概率初步

  1、三种事件:随机事件、不可能事件、必然事件。

  2、概率:P(A)=p.0≤P(A)≤1。

  3、古典概率的求法:①列举法(把所有可能结果都表示出来),②列表法,③树形图。

  4、用频率估计概率:根据一个随机发生的事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率。

5.北师大版九年级下册数学知识点汇总 篇五


  第二十六章二次函数

  1、定义:形如y=ax2+bx+c(a≠0,a、b、c是常数)的函数叫二次函数。

  2、二次函数的分类:①y=ax2:顶点坐标:原点;对称轴:y轴;

  ②y=ax2+c:顶点坐标:(0、c);对称轴:y轴;

  ③y=a(x-h)2:顶点坐标:(h、0);对称轴:直线x=h;

  ④y=a(x-h)2+k:顶点坐标:(h、k);对称轴:直线x=h;

  ⑤y=ax2+bx+c:顶点坐标:(-b/2a,4ac-b2/4a);对称轴:直线x=-b/2a

  3、a、b、c符号的判定:a:开口方向向上→a>0;开口方向向下→a<0。

  b:与a左同右异,对称轴在y轴左侧,a、b同号;对称轴在y轴右侧,a、b异号。

  C:交与y轴正半轴,c>0;交与y轴负半轴,c<0

  b2-4ac:与x轴交点的个数,△>0→两个交点,△<0→无交点,△=0→一个交点。

  3、平移规律:“正左负右”“正上负下”。

  前提:配方成y=a(x-h)2+k的形式。

  4、待定系数法确定函数关系式:①顶点在原点选y=ax2;

  ②顶点在y轴选y=ax2+c;

  ③通过坐标原点选y=ax2+bx;

  ④知道顶点在x轴上选y=a(x-h)2;

  ⑤知道顶点坐标选y=a(x-h)2+k;

  ⑥知道三点的坐标选y=ax2+bx+c。

  5、其他应用:求与x轴的交点→解一元二次方程;与y轴交点为(0、c)。

  6、对称规律:

  ①两抛物线关于x轴对称:a、b、c都变为其相反数。

  ②两抛物线关于y轴对称:a、c不变,b变为其相反数。

  7、实际问题:利润=销售额-总进价-其他费用,利润=(售价-进价)*销售量-其他费用。

初三最新更新
推荐阅读
网站首页 网站地图 返回顶部
无忧考网移动版
京公网安备 11010802026788号